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What I cannot create, I do not
understand.

Richard Feynman

1 Preface
I hope that this blog would be useful at conveying and stringing together the high
level intuitions and ideas often lost during the busyness of semester. The concept
of mathematics is often simple but non-trivial. Often times in an attempt
to cover all the content during the semester, we might have missed out the
simplicity underlying the topic. It is my hope that someone out there might
find this blog enlightening and helpful to them in their studies.

2 Introduction
The field of optimisation is central to machine learning. The task of learning is
often formulated through the lens of optimisation (e.g. Empirical Risk Minimisation).
Therefore, it makes a lot of sense to try to think carefully and analyse optimisation
algorithms to gain new insight into the nature of learning itself.

To aid us in this endeavour, let us first start with a simple but common optimisation
problem we might see in practice and see if we can generalise and develop a more
robust understanding of optimisation from there. This comes from my own
experience studying mathematics major. I often find it is beneficial to think of
simple and familiar ideas in simple settings like R first before generalising these
intuitions to more abstract settings like a compact Hausdorff space. This allows
the brain to seek the familiar and let these simple intuition become a helpful
tour guide through the more abstract and general settings.

Coming back to our central discussion, the problem I have in mind to begin
our discussion is something any secondary school/high school student taking
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Figure 1: Quadratic function on [10, 20]

calculus would know how to solve: how to find the minimum of a y = f(x) =
x2 − 3x− 5 on R i.e

min
x∈R

f(x) = x2 − 3x− 5, (1)

To solve this, all we need is to find the turning points and use either the first or
second derivative test to check if the turning point is the minimum or maximum
point. For the case of the quadratic function, if the turning point we found is a
minimum, we are done as it is also the global minimum. Otherwise, there is no
point in R that is the global minimum.

Let us generalise this problem. Now consider trying to find the minimum of
a quadratic function on a closed-bounded interval, for example, [0, 1] or [−12, 3]
but not (0, 1) or [1,∞) instead of R. Is looking only at the turning points
sufficient to solve our minimisation problem? The answer is no. We also need
to consider the endpoints.For example for

min
x∈[10,20]

f(x) = x2 − 3x− 5, (2)

there are no turning points to be found in [10, 20]. However, there is clearly a
minimum located at the endpoints of the interval [10, 20].

This need to account for the endpoints is the crucial difference between unconstrained
and constraint optimisation. In fact, because of this, mathematicians and
computer scientists prefer to work with unconstrained rather than constraint
optimisation as there are simply fewer things to consider, especially in higher
dimensions. However, we often need to consider constraint optimisation in
practice, so how do we convert a constraint optimisation problem to the more
familiar unconstrained setting?
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3 The Lagrangian
What if we could approximate the unfamiliar with the familiar? This is a
running theme in both applied and pure math. In measure theory, you approximate
the nasty function you want to integrate using a sequence of simple functions
quite literally1. In our problem, we create an unconstrained problem that
approximates the constraint problem accurately.

How might we go about doing something like that ? Well naively, we could
to define a new function that penalises x whenever it goes out of bound i.e
no longer follows the constraint. We might do this by first representing our
constraint [10, 20] as 2 functions,

x ∈ [10, 20] =⇒ 10 ≤ x ≤ 20 =⇒ h1(x) = x− 20 ≤ 0 and h2(x) = 10− x ≤ 0

Hence, our problem of finding f(x∗) which is the minimum of f(x) where x ∈
[10, 20] can be written as

min
x∈R

f(x) = x2 − 3x− 5

s.t. h1(x) = x− 20 ≤ 0

h2(x) = 10− x ≤ 0
(3)

Writing it in the above way makes things a lot easier to work with as it will
make the algebra simpler, trust me. We can then define a new function

Q(x) = max
µ1≥0,µ2≥0

L(x, µ1, µ2) = max
µ1≥0,µ2≥0

f(x) + µ1h1(x) + µ2h2(x).

The function L(x, µ1, µ2) = f(x) + µ1h1(x) + µ2h2(x) is also known as the
Lagrangian. Now if x is no longer in [10, 20], then h1(x) > 0 and h1(x) > 0.
Since we are maximising the Lagrangian over µ1, µ2 where µ1 ≥ 0, µ2 ≥ 0, then
we can set µ1 = µ2 = ∞ so Q(x) = ∞. If x is in [10, 20], then h1(x) ≤ 0 and
h1(x) ≤ 0. Then we can set µ1 = µ2 = 0 so Q(x) = f(x). Thus,

Q(x) =

{
f(x) x ∈ [10, 20]

∞ x ̸∈ [10, 20]
.

Hence, Q(x) can be considered as a very strict penalising function. Any value of
x that steps out of bound for even the slightest is immediately given infinite cost
or punishment. It is clear that any minimiser of Q(x) also solves the constraint
optimisation problem of f(x). This can be shown by contradiction, suppose
that the minimiser of Q(x) is not the solution to the constraint optimisation
problem of f(x). Let x∗ ∈ argminQ(x), then there exist y ∈ [10, 20] such that

1A simple function is a linear combination of characteristic/indicator functions. This
approximation is the critical insight behind the Lebesgue integral.
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f(y) < Q(x∗). Since Q(x) = f(x) when x ∈ [10, 20], thus Q(y) = f(y) < Q(x∗).
Hence, x∗ ̸∈ argminQ(x). This is a contradiction. Hence, minimiser of Q(x)
also minimises f(x). This shows that heuristic approach is a good one. That is
great and all but how do we even minimise Q(x) ?

Well let us first take and approximation again and see where that leads us, let us
approximate then approximate our original optimisation problem by switching
the max and min around as such

min
x∈R

max
µ1≥0,µ2≥0,

L(x, µ1, µ2) ≈ max
µ1≥0,µ2≥0,

min
x∈R

L(x, µ1, µ2)

Why do we want to do this? Because we want to move our unconstrained
minimisation problem inwards before doing the slightly trickier constraint problem,
which makes solving our new optimisation problem slightly more straightforward
than our original primal problem. Our initial problem is then called the primal
problem, and our approximation is called the dual problem. In the above, we
claim that the solutions to the primal and dual problems approximate each
other well.

This begs the question of how well our solution of the dual problem approximates
the optimal solution for the primal solution. Before we answer, let us first
consider this other question, what is the relationship between the two optimisation
problems. To answer that, we need to use the famous min-max inequality2

min
x∈R

max
µ1≥0,µ2≥0,

L(x, µ1, µ2) ≥ max
µ1≥0,µ2≥0,

min
x∈R

L(x, µ1, µ2)

We see from this inequality that the dual problem solution lower bounds the
primal solution. This is known as weak duality. The difference between the
primal and dual solutions is the duality gap. If the primal and the dual solution
are equal, i.e. there is no duality gap, we call that strong duality. Therefore,
it is of interest for us to check if strong duality holds because it means that
our approximation is not just good but exact. One such condition for strong
duality to occur is Slater’s condition. Slater’s condition states that for the
following convex optimisation problem

min
x∈R

f(x)

s.t. hi(x) ≤ 0 , i = 1, . . . ,m

gj(x) ≤ 0 , j = 1, . . . , k

(4)

where f(x), hi(x) and gj(x) are convex functions, strong duality holds if there
exists an x∗ such that x∗ is strictly feasible i.e there exist a feasible point that
doesn’t lie on the edge of any constraint. There are many such conditions, but

2I am fully aware that in actuality, we are dealing with sup and inf but for the sake of
some non-mathematical readers, let us assume the regularity conditions to use min and max
hold.
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I won’t cover the rest of them. My goal is to understand how to interpret and
understand instead of solving such optimisation problems. In part because I
believe there are many optimisation packages and blogs that tell you how to
do the latter but not how to do the former. Nonetheless, I will complete the
initial optimisation problem I posed before delving into the interpretation of
weak duality.

Now lets look at our initial problem again in equation (3), we see something
very interesting. The first is that f(x), h1(x) and h2(x) are all convex. It is
also fairly clear that 12 ∈ [10, 20] such that h1(x) < 0 and h2(x) < 0 i.e 12 is
strictly feasible. Thus, Slater condition holds. That means strong duality holds.
Hence, to solve the dual problem we first solve the unconstrained problem

min
x∈R

L(x, µ1, µ2) = x2 − 3x− 5 + µ1(x− 20) + µ2(10− x) (5)

We can solve this by first noticing it is a strict convex unconstrained optimisation
problem and the turning point is x = µ2−µ1+3

2 .Then substituting this value into
back into the equation above, now we need to maximise the following

max
µ1≥0µ2≥0

min
x∈R

L(x, µ1, µ2)

= max
µ1≥0µ2≥0

(
µ2 − µ1 + 3

2

)2

− 3

(
µ2 − µ1 + 3

2

)
− 5

+ µ1

((
µ2 − µ1 + 3

2

)
− 20

)
+ µ2

(
10−

(
µ2 − µ1 + 3

2

)) (6)

This is not very easy to solve as you have 2 variables, so the algebra gets a
little hairy. It is much more easier to usually let a computer algebra system like
sympy solve this. However, if we want to do the algebra ourselves we can make
our lives a bit easier by only considering a single constraint initially i.e solve the
following first

min
x≤20

L(x, µ) = x2 − 3x− 5 + µ(10− x) (7)

Then, considering what happens if x = 20 and x < 20. We see that if x = 20

max
µ≥0

min
x∈R

L(x, µ)

= max
µ≥0

(20)
2 − 3 (20)− 5

+ µ (−10)

= 335 as µ = 0 since we are dealing with a linear function

(8)
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Similarly, if x < 20 then the solution for (7) is x = µ+3
2 by considering the

turning points as before, thus

max
µ≥0

min
x∈R

L(x, µ)

= max
µ≥0

(
µ+ 3

2

)2

− 3

(
µ+ 3

2

)
− 5

+ µ

(
10−

(
µ+ 3

2

))
=

(
17 + 3

2

)2

− 3

(
17 + 3

2

)
− 5

+ µ

(
10−

(
17 + 3

2

))
this problem can be solved using calculus or using properties of quadratics

= (10)
2 − 3 (10)− 5

= 65
(9)

Thus, the optimal value of x is x = 10.

This feels like a lot more work. In fact, it is a lot more work than just considering
the endpoints and turning points for our simple problem. The beauty and utility
of this approach come when considering more than one dimension and numerous
constraints where the number of endpoints grows exponentially with the number
of constraints we consider. In that setting, converting using a Lagrangian
dual approach makes more sense. However, hopefully by working through this
exercise you see how to solve constraint optimisation using the Lagrangian dual
setup. You can try practising this by considering other quadratics or convex
functions, different constraints or even high dimensions.

Besides making life slightly easier by converting a constraint optimisation to
a more familiar unconstrained problem or a form where we can do algebra a lot
easier, Lagrangian duals are more often used in research to provide a different
perspective of the same problem. For example, in Support Vector Machines
(SVMs) the primal problem is

min
θ,θ0,ζ

1

2
∥θ∥2 + C

n∑
t=1

ζt

s.t. yt(θ
Txt + θ0) ≥ 1− ζt,

ζt ≥ 0

(10)
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but the dual problem is

max
α

n∑
t=1

αt
1

2

n∑
s=1

n∑
t=1

αsαtysytxs
Txt

s.t. αt ∈ [0, C] ∀t ∈ {1, . . . , n},
n∑

t=1

αtyt = 0.

(11)

this allows us to see that there is a dot product taking place and we can replace
that dot product with a kernel allowing us to generalise to infinite dimensional
feature space. This is the essence of the kernel trick used in SVMs.

Another way to gain insight from the dual formulation of constraint optimisation
is by interpreting the coefficient λ mean. In microeconomics, when maximising
profits, λ is the shadow price where a particular regulation such as a quota is
the constraint. In thermodynamics, when maximising the entropy of a given
system, λ is the temperature where the total energy is the constraint of the
system. If strong duality holds, we can typically use λ to tell how changing the
constraint will affect the system. This is known as sensitivity analysis.

Furthermore, interpreting the duality gap can also be a fruitful endeavour. The
max-min formulation I gave above would remind a reader familiar with game
theory of saddle-points in a min-max game. Indeed such an interpretation is,
in fact, valid, and one can think of the Lagrangian as a min-max game. From
that perspective, the duality gap is a player’s advantage of going first. If there
is no advantage of going first, there is no duality gap.

Lastly, the idea of Lagrangian duality is not restricted to constraint optimisation
problems. It can also be used for unconstrained optimisation problems by adding
new dummy variables and equality constraints, allowing us to find the dual to
the new constraint optimisation problem. This approach is used in LASSO Dual
algorithm.

4 Conclusion
These examples would show that thinking about the dual of an optimisation
problem is a fruitful line of thinking, whether it is to approximate an intractable
or complex to solve optimisation problem or trying to understand the importance
of certain constraints of the system. Duality is a valuable tool in a researcher
toolbox to uncover new insights and generalise algorithms to solve problems.
Hopefully, you learnt something from reading this.
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