
End of GSOC Highlight Reel
By: Ang Ming Liang

My 3 Highlights
JAX

potts model VAE Zoo GAN Zoo

JAX Potts Model
• The first major thing I did was the JAX

Potts model, this was the first time I
really made a project in JAX and the
results were amazing 18 secs <- 16
mins. It is an insane reduction.

• There are 3 things I did

• Blocked Gibbs sampling

• Gumble trick

• Convolution for updating

• We also discovered the aliasing issue

• This even got retweeted by
matplotlib

VAE Zoo
• The VAE zoo allows reusable blocks of vae

code

• Multiple VAEs implemented some that only a
month old e.g. sigma VAE (is from ICML 21)

• VQ-VAE with pixel cnn very few places have
as minimalistic and implementation of this
as our code base

• Allows proper comparison on reconstruction
by having the original and samples as well

• Cherry ontop: VAE tricks notebook + it is
pytorch lightning >1.0

GAN Zoo

• The GAN zoo allows reusable blocks of
GAN code

• Multiple GANs on celeba including Celeba

• Some notable GANs include : WGANs
and LOGAN (this idea was use in
bigGAN)

• Cherry ontop: GAN trick notebook

My 3 Takeaways

JAX Design
Patterns

Multi-host
TPUs

JAX: Key Takeaways
• Avoid index update

• It is very slow

• Order of updates may not be deterministic

• Generally not “jaxy”

• Issues on GitHub about this

• https://github.com/google/jax/issues/
2765

• https://github.com/google/jax/issues/
2032

https://github.com/google/jax/issues/2765
https://github.com/google/jax/issues/2765
https://github.com/google/jax/issues/2032
https://github.com/google/jax/issues/2032

JAX: Key Takeaways

• Use JAX for large amounts of data and
when a lot of computation is required and
numpy with numba for smaller datasets and
less computation

• The key example of this I found was when it
comes to array indexing not even index
update

But when JAX works it is amazing
Sinkhorn algorithm 3sec JAX from

2 mins in numpy !!
Potts model 18sec JAX from 16

mins in numpy/numba !!

Design Patterns: Key Takeaways
• Keeping code DRY (Don’t repeat yourself)

• Basic bookkeeping : Trying to keep identify
common code and write a function and put it
into utils

• Separation of concerns and IoC this is the
idea behind of the design of pytorch lightning

• Builder (assembler) pattern: Separate the
creation of the object from its representation.
This pretty much allows you to experiment
freely with a class representation and the
components without worrying too much
about the external interface. compare_results.ipynb

runs.py

Multi-host TPUs: Key Takeaways
• This summer I manage to also spend a week learning how

to use multi-host TPU to perform simulations

• Learnt how to distribute the script across multi-host and
leverage JAX parallel operators to combine the result
across multiple host after pmapping the simulation.

• Something I wish to do but didn’t: Replica Exchange
MCMC

Single GPU

32 TPUs

Thanks guys for this amazing
and eventful summer 🎉
Hopefully we can meetup in person one day

