End of GSOC Highlight Reel

By: Ang Ming Liang

LYY
- e

~¥7

.
15

-
s
- 2 4 . _
-
- \ v .__)
~ p : p _y
- - = r W
- v ‘,” [»
. < >
’ B
o » E -
. - § o
- |
- |

GAN Zoo

GAN (Code, Config)

VAE Zoo

Original Images (for

VAE (Code, Config)

My 3 Highlights

O
<t
—
Q.
=
kT

O

d

Oam
=5
I.v.m.v”
e

O

O -

JAX Potts Model

* The first major thing | did was the JAX
Potts model, this was the first time |
really made a project in JAX and the
results were amazing 18 secs <- 16
mins. It is an insane reduction.

 There are 3 things | did
* Blocked Gibbs sampling
e Gumble trick
e Convolution for updating
 We also discovered the aliasing issue

* This even got retweeted by
matplotlib

The math

The potts model
CRP(JS" e nbr ¥(Xn = K))

plx) = %exp—%’(x)%’(x) =-J), . I = x;)plx; = klx_;) = TR) SRS Fo—

In order to efficiently compute

Zn € nbr

for all the different states in our potts model we use a convolution. The idea is to first reperesent each potts model state as a one-hot state and then apply a convc
compute the logits.

o .. 0 .. 0 0
Su Sz o S 0 Sy Spp oo Sy O Ey Ep .. E,
Sn Sn - Sy . 0 Sy S» . S0 O . Ey Ey .. Ey,
: . - |padding| o convolution ; W
S S o Sun 0 S, Sp v Swn 0 E, Ey .. En
0 ... 0 0 0

An example

1
1
1

[SS RSN S
(SN SNt}

[SS IS S
~———

()paddmg()conwﬂpﬁon(?

100% [8007800 [00:17<00:00, 46.21it/s]

100% [800/800 [00:01<00:00, 443.52it/s]
100% [800/800 [00:00<00:00, 860.69it/s]

cococo
CSm——o
S———o
S———o
cooco

10:12 1] “? ‘i:i’

4 Tweet

Please file an issue if our docs can be
clearer about these sorts of things!

& Ming Liang @neoanarika - 3d

This is pretty weird, there are “aliasing” effects
when using matplotlib due to their default
antialiasing interpolations. This can be easily
resolved using none interpolation or nearest.
However, this took me a while to catch as | was
trying to see if the error lied in my code.

import numpy as np
~ import matplotlib.pyplot as plt

iﬁ&]‘x = np.rlndon.binonial(l, 0.5, size=(128, 128))

fig, axs = plt.subplots(l, 3, figsize=(8, 8))
for t in range(3): X
| axs({t].imshow(X, cmap="Accent")

5
0
L)

9:53 AM - 23/6/21 - Twitter for Android

7 Likes

Tweet your reply

© Q 8 &

Model Paper Reconstruction

Original Images (for) ,' i 1<
reconstruction) | s . r L .f i G'rf-] QE . NA
The VAE zoo allows reusable blocks of vae

code AR

'y

-r.
il !

‘"i—" el la 18 e
AR Y

Multiple VAEs implemented some that only a AE (Code,Coni
month old e.g. sigma VAE (is from ICML 21)

VQ-VAE with pixel cnn very few places have
as minimalistic and implementation of this
as our code base

VAE (Code, Config)

Allows proper comparison on reconstruction
by having the original and samples as well

Cherry ontop: VAE tricks notebook + it is JOVAE (K 512, D - 641 (Code
pytOrCh ||ghtn|ng >1 O Config) + PixelCNN(Code)

Link

GAN Zoo

Results

e The GAN zoo allows reusable blocks of
GAN code

 Multiple GANs on celeba including Celeba

 Some notable GANs include : WGANSs e e
and LOGAN (this idea was use In
bigGAN)

e Cherry ontop: GAN trick notebook

My 3 Takeaways

JAX

def sinkhorn knopp jax(M, r, ¢, lam,
M = jnp.array(M)
n, m = M.shape
P = jnp.exp(- lam * M)
P /= P.sum()
normalize this matrix
for 1 in trange(niter):
P = scale cols and rows(P)
return P, jnp.sum(P * M)

Design
Patterns

def assembler(config, mode):

is_config_valid(config)

vae_name - config["exp_params"] ["model_name"]
dataset_name - config["exp_params"] ["dataset"]
componets
encoder - componets.Encoder(++config["encoder_params"])
decoder - componets.Decoder(++config["decoder_params"])
loss -~ partial(componets.loss, config["loss_params"])

vae - VAE(vae_name, loss, encoder, decoder)

importlib. import_module(f"models.{dataset_name}.

Multi-host
TPUs

Ex 10>

2000 -
@
1500 -
@
——
L
S
Q. 1000 - S
=]
500 - ¢
@
@
®e
®o0
0- A AL Y YY)
10 20 60 70 80

JAX: Key Takeaways

Avoid index update
jax.ops.index_update

It Is very slow

jax.ops.index_updatel(x, idx, y, indices_are_sorted=False, unique_indices=False) [source]

Pure equivalent of x[idx] = y .

Order of updates may not be deterministic

Returns the value of x that would result from the NumPy-style indexed assignment :

x[idx] =y

Generally not “jaxy”

Note the index_update operator is pure; x itself is not modified, instead the new value that x

ISSUGS on G|tHUb abOUt th|S would have taken is returned.

Unlike NumPy's x[idx] = y , if multiple indices refer to the same location it is undefined which

update is chosen; JAX may choose the order of updates arbitrarily and nondeterministically (e.g.,

° https//g ithub.co m/g 00g |e/J ax/lssues/ due to concurrent updates on some hardware platforms). —
2765

o https://qgithub.com/google/jax/issues/
2032

https://github.com/google/jax/issues/2765
https://github.com/google/jax/issues/2765
https://github.com/google/jax/issues/2032
https://github.com/google/jax/issues/2032

JAX: Key Takeaways

° from random import randint
array = jnp.ones((10000,10000))
@jit
def func(i):

return array[:, 1]

» Use JAX for large amounts of data and " retutn func(randint(0, 9999))
when a lot of computation is required and ~INSERT--

numpy with numba for smaller datasets and
less computation

[61] %timeit func2()

The slowest run took 946.82 times longer than the fastest.
1000 loops, best of 5: 201 us per loop

 The key example of this | found was when it
. . . [62] array = np.ones((10000,10000))
comes to array indexing not even index def npfunc(i)s
update return array[:, 1i]

def npfunc2():
return npfunc(randint(0, 9999))

[63] %timeit npfunc2()

The slowest run took 10.85 times longer than the fastest.
100000 loops, best of 5: 1.94 us per loop

But when JAX works it Is amazing

Sinkhorn algorithm 3sec JAX from
2 mins in numpy !!

- Comparing numpy and JAX

o 1l r = np.ones(n) / n

2 ¢ = np.ones(m) / m

L

4 M = jnp.array(distance matrix(X1l, X2))
5

6 P, d = sinkhorn knopp jax(M, r, c, lam=30, niter=1000)

L 100% B 100071000 [00:03<00:00, 282.23it/s]

[] 1 P, d = sinkhorn knopp np(M, r, ¢, lam=30, niter=1000)

100% [100071000 [02:13<00:00, 7.51it/s]

Visualisation of sinkorn algorithm

Warning: Only taking a subset of points to map otherwise the visualisation will look cluttered on matplotlib

[] 1 sampling factor = 100
2 plt.scatter(X1[:,0], X1[:,1], color="blue")
3 plt.scatter(X2[:,0], X2[:,1], color="red")
4 for i in trange(0, n, sampling factor):

5 for j in range(0, m, sampling factor):
6 plt.plot([X1[i,0], X2([3j,0]], [X1[i,1], X2[j,1l]], color="green",
7 alpha=float(P[i,j] * n)*sampling factor)

8 plt.title('Optimal matching')

100 | 50/50 0:11<00:0, 4 5016

Text(0.5, 1.0, 'Optimal matching')
Optimal matching

10 1

0.5 A1

0.0 1

Potts model 18sec JAX from 16
mins in numpy/numba !

100%

10000000/10000000 [04:23<00:00, 37886.08it/s]

100% I 10000000/10000000 [08:49<00:00, 18899.70it/s]
100% [10000000/10000000 [04:24<00:00, 37828.91it/s]

100% [8007800 [00:17<00:00, 46.21it/s]
100% [800/800 [00:01<00:00, 443.52it/s]
100% [8007800 [00:00<00:00, 860.69it/s]

A
By 4
e

%

. a
> o J g L. . »
< S 2 1
. ': 2 g
» 5 8 - E
U -
1/ - et
. < ’
Ve o, -l e L A%y
.-‘ - .. - b J
- . -
.. - . =" SRy -~
. v ‘al -
S y N)
»
2, 5
. . =)
- .
.'
-
o ¥

e .l- d 2 .-I
". : ‘... -‘ ,F >: we_ 1 ..
?." " .:agﬁ’%ﬁ#,a 2.0

50

Design Patterns:

 Keeping code DRY (Don’t repeat yourself)

* Basic bookkeeping : Trying to keep identify
common code and write a function and put it
into utils

o Separation of concerns and |loC this is the
idea behind of the design of pytorch lightning

* Builder (assembler) pattern: Separate the
creation of the object from its representation.
This pretty much allows you to experiment
freely with a class representation and the
components without worrying too much
about the external interface.

runs.py

compare_results.ipynb

Key [akeaways

def assembler(config, mode):

is_config_valid(config)

vae_name - config["exp_params"] ["model_name"]
dataset_name - config["exp_params"]["dataset"]

componets - importlib.import_module(f"models.{dataset_name}.{vae_name}")
encoder - componets.Encoder(++config["encoder_params"])

decoder - componets.Decoder(config["decoder_params"])

loss - partial(componets.loss, config["loss_params"])

vae - VAE(vae_name, loss, encoder, decoder)

args - parser.parse_args()
config - get_config(args.filename)
vae - assembler(config, "training")

config =~ get_config(fname)
vae — assembler(config, "inference")

Multi-host TPUs: Key Takeaways

Single GPU
. | 40 ooo..
 This summer | manage to also spend a week learning how
to use multi-host TPU to perform simulations 30
EE:H) .’ o
| earnt how to distribute the script across multi-host and -
leverage JAX parallel operators to combine the result 10 —
across multiple host after pmapping the simulation. , Tleet .
| | L | 0 10 20 30 40 50
 Something | wish to do but didn’t: Replica Exchange Fx 10-5
MCMC 32 TPUs
2000 - .
Parallelsing the simulation o
vectorized_simulation = vmap(simulation, in_axes=(@, None)) i560 ’
parallel_vectorized_simulation = pmap(vectorized_simulation, in_axes=(0, None)) m o
a-: 1000 2
vectorized_energy = vmap(energy_fun) ’
parallel_vectorized_energy = pmap(vectorized_energy) D o
0- ..°°ooooooooooooooo
E) lb 210 610 72) 810

Ex10~°

Thanks guys for this amazing
and eventful summer £

-
LEVEL UP!

memegenerator.net

