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Abstract

The multi-armed bandit (MAB) problem is a ubiquitous decision-making problem that exemplifies

the exploration-exploitation tradeoff. Standard formulations exclude risk in decision making. Risk

notably complicates the basic reward-maximising objectives, in part because there is no universally

agreed definition of it. In this paper, we consider an entropic risk (ER) measure and explore the

performance of a Thompson sampling-based algorithm ERTS under this risk measure by providing

regret bounds for ERTS and corresponding instance dependent lower bounds.

Keywords: Thompson sampling, entropic risk, multi-armed bandits

1. Introduction

The multi-armed bandit (MAB) problem is a classic reinforcement learning problem that analyses

sequential decision making, in which the learner has access to partial feedback from her decisions.

The problem has been garnering interest in recent years. It informs many critical theoretical ques-

tions about the role of exploration vs exploitation in reinforcement learning and applies to both

theoretical problems and various real-world applications, such as dynamic pricing, clinical trials,

and portfolio optimisation.

In the well-known stochastic MAB setting, a player chooses among K arms, each characterised

by an independent reward distribution. During each period, the player plays one arm and observes

a random reward from that arm. She then incorporates the information she receives from pulling

that arm in choosing the next arm she selects. The player repeats the process for a horizon of n
periods. In each period, the player faces a dilemma between exploring other arms’ potential value

or exploiting the arm that the player believes offers the highest estimated reward.

In the usual setting, the risk of pulling an arm is not being taken into account. However, in many

practical settings, such as financial portfolio optimisation, the risk is often the clients’ main concern.
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In this regard, the MAB problem can been tweaked to model such risk-aversion. This paper uses

entropic risk measure as the risk measure to minimise due to the simple exponential relationship it

has with risk-aversion and utility, and devises a Thompson sampling-based learning algorithm that

minimises entropic risk.

1.1 Related Work

A variety of analyses on MABs involving risk measures have been carried out. Sani et al. (2012)

considered the mean-variance as their risk measure. Each arm i followed a Gaussian distribution

with mean µi ∈ [0, 1] and variance σ2i ∈ [0, 1]. The authors provided an LCB-based algorithm with

accompanying regret analyses. Galichet et al. (2013) proposed the Multi-Armed Risk-Aware Ban-

dit (MARAB) algorithm with the goal of minimising the number of pulls of risky arms, using the

risk measure CVaR. Vakili and Zhao (2016) demonstrated that the instance-dependent and instance-

independent regrets in terms of the mean-variance of the reward process over a horizon n are lower

bounded by Ω(log n) and Ω(n2/3) respectively. Sun et al. (2017) analysed contextual bandits with

risk constraints, and developed a meta algorithm which makes use of the online mirror descent algo-

rithm that achieves near-optimal regret with respect to minimising the total cost. Zhu and Tan (2020)

designed the first Thompson sampling algorithm for risk measures, particularly the mean-variance

risk measure for Gaussian bandits, and proved near-optimal regret bounds under specific regimes.

Chang et al. (2021) designed a Thompson sampling algorithm factoring a user’s “risk tolerance”

level, either minimising mean rewards under some “maximum risk” criterion, or simply minimising

the risk measure. Baudry et al. (2020) designed and analysed Thompson sampling-based algorithms

α-NPTS for bounded rewards and α-Multinomial-TS for discrete multinomial distributions.

The papers most related to our work is that by Zhu and Tan (2020) and Chang et al. (2021). Zhu and Tan

(2020) considered arms with the highest mean-variance to be optimal, and their definitions and

methods can be analogously defined for minimising the mean-variance. Chang et al. (2021) defined

arms with the minimum CVaR as optimal in their “infeasible instance”, which produced theoreti-

cal analogues for “feasible instances”. This hints that the heavy duty analysis happens in trying to

choose arms with the risk measure minimised. Our paper seeks to explore the efficacy of Thomp-

son sampling in the analogous risk-minimising problem setting proposed by Zhu and Tan (2020),

but instead considering the entropic risk measure. We demonstrate and prove the asymptotic opti-

mality of ERTS, whose asymptotic upper bound matches the theoretical lower bound for consistent

algorithms that solve the entropic risk MAB for Gaussian bandits.

1.2 Contributions

• ERTS Algorithm: We design ERTS, an algorithm that is similar to the structure of CVaR-

TS in Chang et al. (2021) but using entropic risk instead of CVaR as the risk measure. This

algorithm uses Thompson sampling (Thompson, 1933) as explored for mean-variance bandits

in Zhu and Tan (2020) and CVaR bandits in Chang et al. (2021).

• Comprehensive regret bounds: We provide theoretical analysis of the ERTS algorithm for

Gaussian bandits with bounded variances. We state and prove both upper and lower bounds,

showing that ERTS is the first asymptotically optimal algorithm that solves the entropic risk
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multi-armed bandit problem. Our proof techniques solidify the novel ξ-trick in Chang et al.

(2021), and affirm future analysis on MABs involving generalised risk measures.

This paper is structured as follows. We first introduce the formulation of the entropic risk MAB

problem in Section 2. In Section 3, we present ERTS algorithm. We present our regret bounds and

prove that the upper bound we derived is asymptotically optimal in Section 4. Section 5 provides

the proof outlines of the regret bounds in Section 4. We conclude our discussion in Section 6

summarizing our work and suggesting avenues for further research. For brevity, we defer detailed

proofs of the theorems to the supplementary material.

2. Problem formulation

In this section we define the entropic risk MAB problem. For the rest of the paper, denote [k] =
{1, . . . , k} for any k ∈ N and (t)+ = max{0, t} for t ∈ R.

Definition 1. For any random variable X, given a risk parameter γ, the entropic risk (Lee et al.,

2020; Howard and Matheson., 1972) of X is defined by

ERγ(X) :=
1

γ
logE[exp(−γX)].

In this paper, we work with Gaussian random variables X ∼ N (µ, σ2). Direct computations

then yield ERγ(X) = −µ + (γ/2)σ2, which is consistent with the computation in Chang et al.

(2021, Section 5). Setting γ → 0+ (resp. γ → +∞) yields the risk-neutral (resp. risk-averse)

setting, since µ (resp. σ2) dominates in the former (resp. latter) case.

Consider a K-armed MAB ν = (ν(i))i∈[K] played over a horizon of length n. Letting ERγ(X)
denote the entropic risk, our objective is to select the least risky arm, that is, the arm with the lowest

entropic risk. Thus, we define an arm i to be optimal precisely when i ∈ argmink∈[K]ERγ(ν(k)).
Suppose arm 1 is optimal (uniquely, without loss of generality). We can then define ∆ER(i, γ) :=
ERγ(i)− ERγ(1) > 0 and the regret of a policy π by

Rn(π) :=
∑

i∈[K]\{1}

E[Ti,n]∆ER(i, γ),

where Ti,n denotes the number of times arm i was pulled in the first n rounds. This is a natural

definition based on regret decomposition (Lattimore and Szepesvári, 2020, Chapter 4.5), and in fact

corresponds to the regret decomposition in the case γ → 0+ (i.e. the risk-neutral setting). In

the following, we design and analyse ERTS, which aims to minimise Rn(π), and also attain an

instance-dependent lower bound, which establishes asymptotic optimality.

3. The ERTS Algorithm

In this section, we introduce the Entropic Risk Thompson Sampling (ERTS) algorithm for Gaussian

bandits with bounded variances, i.e., ν ∈ EK
N (σ2max) := {ν = (ν1, . . . , νK) : νi ∼ N (µi, σ

2
i ), σ

2
i ≤

σ2max ∀i ∈ [K]} for some σ2max > 1. Similar to Zhu and Tan (2020) and Chang et al. (2021), the

algorithm samples from the posteriors of each arm, then chooses the arm according to a multi-

criterion procedure.
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Denote the mean and precision of the Gaussian by µ and ψ respectively. If (µ,ψ) follows the

distribution Normal-Gamma(µ, T, α, β), then ψ ∼ Gamma(α, β), and µ|ψ ∼ N (µ, 1/(ψT )).
Since the conjugate prior for the Gaussian with unknown mean and variance is the Normal-Gamma

distribution, we use Algorithm 1 to update (µ,ψ) via Bayes’ theorem.

We present the ERTS algorithm. In each round t, for each arm i, the player samples the param-

eters (θit, κit) from the posterior distribution of arm i, then chooses arm j = argmini∈[k]ÊRγ(i, t),

where ÊRγ(i, t) := −θi,t + γ/(2κi,t), i.e. least risky arm available.

Algorithm 1 Update(µ̂i,t−1, Ti,t−1, αi,t−1, βi,t−1)

1: Input: Prior parameters (µ̂i,t−1, Ti,t−1, αi,t−1, βi,t−1) and new sample Xi,t

2: Update the mean: µ̂i,t =
Ti,t−1

Ti,t−1+1 µ̂i,t−1 +
1

Ti,t−1+1Xi,t

3: Update the number of samples, the shape parameter, and the rate parameter: Ti,t = Ti,t−1 + 1,

αi,t = αi,t−1 +
1
2 , βi,t = βi,t−1 +

Ti,t−1

Ti,t−1+1 ·
(Xi,t−µ̂i,t−1)

2

2

Algorithm 2 Entropic Risk Thompson Sampling (ERTS)

1: Input: Risk parameter γ, µ̂i,0 = 0, Ti,0 = 0, αi,0 =
1
2 , βi,0 =

1
2

2: for t = 1, 2, . . . ,K do

3: Play arm t and update µ̂t,t = Xt,t

4: Update(µ̂t,t−1, Tt,t−1, αt,t−1, βt,t−1)
5: end for

6: for t = K + 1,K + 2, ... do

7: Sample κi,t from Gamma(αi,t−1, βi,t−1)
8: Sample θi,t from N (µ̂i,t−1, 1/Ti,t−1)

9: Play arm j(t) = argmini∈[K]ÊRγ(i, t) and observe loss Xj(t),t ∼ ν(j(t))
10: Update(µ̂j(t),t−1, Tj(t),t−1, αj(t),t−1, βj(t),t−1)
11: end for

4. Regret Bound for ERTS and Lower Bounds

We present our regret bounds in the following theorems. These verify the conjecture made in

Chang et al. (2021, Section 5) regarding risk measures of Gaussian bandits of the form af(µ) +
bg(σ2), where (f(x), g(x), a, b) = (x, x,−1, γ/2). Furthermore, they establish ERTS as asymptot-

ically optimal in the context of Gaussian entropic risk bandits.

Theorem 2 (Upper Bound). Fix ξ ∈ (0, 1), γ ∈ (0,∞). Then the asymptotic regret of ERTS for

entropic risk Gaussian MAB bandits satisfies

lim sup
n→∞

Rn(ERTS)

log n
≤

∑

i∈[K]\{1}

Ri∆ER(i, γ),

4
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where

Ri := max





2

ξ2∆2
ER(i, γ)

,
1

h
(

γσ2
i

γσ2
i
−2(1−ξ)∆ER(i,γ)

)



 .

Furthermore, setting

ξγ = 1−
γσ2i

2∆ER(i, γ)

(
1−

1

h−1
+

(
∆2

ER(i, γ)/2
)
)
,

yields

1

h
(

γσ2
i

γσ2
i
−2(1−ξγ)∆ER(i,γ)

) ≤
2

ξ2γ∆
2
ER(i)

and ξγ → 1− as γ → 0+, where h−1
+ (y) = max {x : h(x) = y}.

Remark 3. The final part of the theorem shows that the upper bound is characterised by the quantity

2/(ξ2γ∆
2
ER(i, γ)). By continuity, we obtain the regret bound 2/(∆2

ER(i, γ)). Furthermore, we note

that ∆ER(i, γ) → −µi − (−µ1) = µ1 − µi as γ → 0+, and thus the upper bound simplifies to

2/(µ1 − µi)
2. This agrees with our intuition since ERγ(i) = −µi + (γ/2)σ2i → −µi as γ → 0+,

implying that we are in the risk-neutral setting. Thus, the results correspond to those derived for

mean-variance bandits (Zhu and Tan, 2020) and CVaR bandits (Chang et al., 2021).

Next, we establish an instance-dependent lower bound for the expected pulls of non-optimal

arms under consistent algorithms. Consider a class C of distributions and define Si = {ν ′(i) ∈ C :
ER(ν ′(i)) < ER(1)}. Define for each non-optimal arm i,

η(i, γ) = inf
ν′(i)∈Si

{KL(ν(i), ν ′(i))},

where KL(P,P′) denotes the KL-divergence between two probability measures P,P′.

Theorem 4 (Lower Bound). Let π be a policy over the class of distributions C satisfying Rn(π) =
o(na) for any a > 0. Then for any non-optimal arm i, we have

lim inf
n→∞

E[Ti,n]

log n
≥

1

η(i, γ)
.

In particular, if C = EK
N (σ2max), then

lim inf
n→∞

Rn(π)

log n
≥

∑

i∈[K]\{1}

Ri∆ER(i, γ).

Remark 5. This implies that the asymptotic lower bound for the regret matches its asymptotic upper

bound in Theorem 2 unconditionally. Hence, for the Gaussian entropic risk MAB problem, ERTS

is asymptotically optimal.

5



ANG, LIM, AND CHANG

5. Proof Outlines for Theorem 2 and 4

Theorem 2: Denote the sample entropic risk as ÊRγ(i, t) = −θi,t+γ/(2κi,t). Fix ε > 0 and define

Ei(t) :=
{
ÊRγ(i, t) > ERγ(1) + ε

}
, that is, the event that the Thompson sample mean of arm i

is ε-riskier than a certain threshold or, more precisely, ε-higher than the optimal arm (which has the

lowest entropic risk). Intuitively, event Ei(t) occurs with high probability when the algorithm has

explored sufficiently. However, the algorithm does not choose arm i when Ec
i (t) occurs with small

probability under Thompson sampling, which contributes directly to the regret bound. Therefore, it

suffices to bound the number of times Ec
i (t) occurs.

In order to bound E [Ti,n], we can split E [Ti,n] into two parts using a key lemma by Lattimore and Szepesvári

(2020) to yield E [Ti,n] ≤ Λ1+Λ2+1, where Λ1 = E

[∑n−1
s=0

(
1

G1,s
− 1
)]

and Λ2 =
∑n−1

s=0 P
(
G1,s >

1
n

)
.

It remains to upper bound Λ1 and Λ2. The techniques to upper bound Λ1 are similar to those from

Zhu and Tan (2020, Section 4.6) and Chang et al. (2021, Section 5). To upper bound Λ2, we split

the event Ec
i (t) =

(
ÊRγ(i, t) ≤ ERγ(1) + ε

)
into

Ψ1(ξ) = {−θi,t + µi ≤ −ξ(∆ER(i, γ) − ε)} ,

Ψ2(ξ) =

{
γ

2

(
1

κi,t
− σ2i

)
≤ (−1 + ξ)(∆ER(i, γ)− ε)

}

That is, Ec
i (t) ⊆ Ψ1(ξ)∪Ψ2(ξ). We then use the union bound which yields P(Ec

i (t)) ≤ P(Ψ1(ξ))+
P(Ψ2(ξ)), which we can upper bound by known concentration bounds. Following the strategy em-

ployed by Chang et al. (2021), a judicious selection of the free parameter ξ ∈ (0, 1) allows us to

allocate ”weights” on the bounds of P(Ψ1(ξ)) and P(Ψ2(ξ)) which then yield 2/(ξ2∆2
ER(i, γ)) and(

h
(

γσ2
i

γσ2
i
−2(1−ξ)∆ER(i,γ)

))−1
without incurring further residual terms.

Theorem 4: The proof of the lower bound follows immediately from Kagrecha et al. (2020, Theo-

rem 4) by replacing the criterion cα(ν
′(k)) ≤ c∗α by ER(ν ′(k)) ≤ ER(1). We then particularize the

lower bounds therein by decisively setting the distribution of ν ′(i) to have a Gaussian distribution

with mean µi + σi
√

2/Ri + ε and variance σ2i , which then returns the desired lower bound.

6. Conclusion

This paper applies Thompson sampling (Thompson, 1933) to provide the first solution for entropic

risk MAB problems which have not been previously considered before to the best of our knowledge.

We proposed a new algorithm ERTS to solve this problem and proved that this proposed algorithm

is asymptotically optimal for the ER MAB problem. Further work includes analysing Thomp-

son sampling of Gaussian MABs under general risk measures and exploring Thompson sampling’s

performance for Entropic-Risk sub-Gaussian bandits. We may also potentially design a general

framework for proving the efficacy of Thompson sampling over the state-of-the-art L/UCB-based

techniques for generalised risk-averse MABs and a wider class of bandits (under reasonable assump-

tions, such as the crucial properties of the risk-measures, existence of conjugate prior estimates, as

well as relevant concentration bounds).
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Appendix A.

Proof [Proof of Theorem 2] We first state without proof a crucial lemma from Lattimore and Szepesvári

(2020) which we will use in our analysis.

Lemma 6 (Lattimore and Szepesvári (2020)). Let Pt( · ) = P( · |A1,X1, . . . , At−1,Xt−1) be the

probability measure conditioned on the history up to time t − 1 and Gis = Pt(E
c
i (t)|Ti,t = s),

where Ei(t) is any specified event for arm i at time t. Then

E[Ti,n] ≤
n−1∑

s=0

E

[
1

G1s
− 1

]
+

n−1∑

s=0

P

(
Gis >

1

n

)
+ 1.

Denote the sample entropic risk at γ by ÊR(i, t) = −θi,t + γ/(2κi,t). Fix ε > 0, and define

Ei(t) :=
{
ÊR(i, t) > ERγ(1) + ε

}
,

the event that the Thompson sample entropic risk of arm i is ε-higher than the optimal arm (which

has the lowest entropic risk). Intuitively, event Ei(t) is highly likely to occur when the algorithm

has explored sufficiently. However, the algorithm does not choose arm i when Ec
i (t), an event with

small probability under Thompson sampling, occurs. By Lemma 6 and the linearity of expectation,

we can divide E[Ti,n] into two parts as

E[Ti,n] ≤
n−1∑

s=0

E

[
1

G1s
− 1

]
+

n−1∑

s=0

P

(
Gis >

1

n

)
+ 1. (1)

By Lemmas 8 and 11 by that which follows, we have

n∑

s=1

E

[
1

G1s
− 1

]
≤
C1

ε3
+
C2

ε2
+
C3

ε
+ C4, and

n∑

s=1

Pt

(
Gis >

1

n

)
≤ 1 +max





2 log(2n)

ξ2 (∆ER(i, γ) − ε)2
,

log(2n)

h
(

γσ2

γσ2
i
−2(1−ξ)(∆ER(i,γ)−ε)

)



+

C5

ε4
+
C6

ε2
.

Plugging the two displays into (1), we have

E[Ti,n] ≤ 1+max





2 log(2n)

ξ2 (∆ER(i, γ) − ε)2
,

log(2n)

h
(

γσ2

γσ2
i
−2(1−ξ)(∆ER(i,γ)−ε)

)



+

C ′
1

ε4
+
C ′
2

ε3
+
C ′
3

ε2
+
C ′
4

ε
+C ′

5,

(2)

where C ′
1, C

′
2, C

′
3, C

′
4, C

′
5 are constants. Setting ε = (log n)−

1

8 into (2), we get

lim sup
n→∞

Rn(ERTS)

log n
≤

∑

i∈[K]\{1}


max





2

ξ2∆2
ER(i)

,
1

h
(

γσ2

γσ2
i
−2(1−ξ)∆ER(i,γ)

)






∆ER(i, γ).

7



ANG, LIM, AND CHANG

Lemma 7. We can lower bound

Pt (E
c
1(t) | T1,t = s, µ̂1,s = µ, σ̂1,s = σ) = Pt

(
ÊR1 ≤ ER1 + ε | T1,t = s, µ̂1,s = µ, σ̂1,s = σ

)

by

Pt

(
ÊRi ≤ ER1 + ε | T1,t = s, µ̂1,s = µ, σ̂1,s = σ

)

≥





Pt

(
θ1,t − µ1 ≥ − ε

2

)
· Pt

(
1

κ1,t
− σ1 ≤

ε
γ

)
if µ ≤ µ1, σ ≥ σ1,

1
2Pt

(
1

κ1,t
− σ1 ≤

ε
γ

)
if µ > µ1, σ ≥ σ1,

1
2Pt

(
θ1,t − µ1 ≥ − ε

2

)
if µ ≤ µ1, σ < σ1,

1
4 if µ > µ1, σ < σ1.

(3)

Proof Given T1,t = s, µ̂1,s = µ, σ̂1,s = σ, a direct calculation gives us,

Pt

(
ÊR1 ≤ ER1 + ε | T1,t = s, µ̂1,s = µ, σ̂1,s = σ

)

= Pt

(
−θ1,t +

γ

2κ1,t
−
(
−µ1 + (γ/2)σ21

)
≤ ε

∣∣∣ T1,t = s, µ̂1,s = µ, σ̂1,s = σ

)

= Pt

(
−(θ1,t − µ1) +

γ

2

(
1

κ1,t
− σ21

)
≤ ε

∣∣∣ T1,t = s, µ̂1,s = µ, σ̂1,s = σ

)

≥ Pt (−(θ1,t − µ1) ≤ ε/2 | T1,t = s, µ̂1,s = µ, σ̂1,s = σ)

Pt

(
γ

2

(
1

κ1,t
− σ21

)
≤ ε/2

∣∣∣ T1,t = s, µ̂1,s = µ, σ̂1,s = σ

)

≥





Pt

(
θ1,t − µ1 ≥ − ε

2

)
· Pt

(
1

κ1,t
− σ21 ≤ ε

γ

)
if µ ≤ µ1, σ

2 ≥ σ21 ,

1
2Pt

(
1

κ1,t
− σ21 ≤ ε

γ

)
if µ > µ1, σ

2 ≥ σ21 ,

1
2Pt

(
θ1,t − µ1 ≥ − ε

2

)
if µ ≤ µ1, σ

2 < σ21 ,
1
4 if µ > µ1, σ

2 < σ21 .

Then the lemma holds since Pt(θ1,t−µ1 ≥ −ε/2) > 1/2 if µ > µ1, and Pt

(
1

κ1,t
− σ21 ≤ ε

γ

)
≥ 1/2

if σ < σ21 , by using properties of the median of the Gaussian and Gamma distributions respectively.

Lemma 8 (Upper bounding the first term of (1)). We have

n∑

s=1

E

[
1

G1s
− 1

]
≤
C1

ε2
+
C2

ε
+ C3,

where C1, C2, C3.

Proof The proof follows immediately from Lemma 7 and Zhu and Tan (2020, S-3.3) by scaling

ε > 0.
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Lemma 9. For ξ ∈ (0, 1), we have

P

(
ÊRi ≤ ER1 + ε | Ti,t = s, µ̂i,t = µ, σ̂2i,t = σ2

)

≤ exp
(
−
s

2
(µi − µ+ ξ(∆ER(i, γ) − ε))2

)
+ exp

(
−sh

(
γσ2

γσ2i − 2(1− ξ)(∆ER(i, γ) − ε)

))
,

where h(x) = 1
2(x− 1− log x).

Proof For ξ ∈ (0, 1), we have

P

(
ÊRi ≤ ER1 + ε | Ti,t = s, µ̂i,t = µ, σ̂2i,t = σ2

)

= Pt

(
−θi,t + µi +

γ

2

(
1

κi,t
− σ2i

)
≤ −∆ER(i, γ) + ε

∣∣∣ Ti,t = s, µ̂i,s = µ, σ̂i,s = σ

)

≤ Pt (−θi,t + µi ≤ −ξ (∆ER(i, γ) − ε) | Ti,t = s, µ̂i,s = µ, σ̂i,s = σ)+

Pt

(
γ

2

(
1

κi,t
− σ2i

)
≤ −(1− ξ) (∆ER(i, γ) − ε)

∣∣∣ Ti,t = s, µ̂i,s = µ, σ̂i,s = σ

)

= Pt (θi,t − µ ≥ (µi − µ) + ξ (∆ER(i, γ) − ε) | Ti,t = s, µ̂i,s = µ, σ̂i,s = σ)+

Pt

(
κi,t ≥

γ

γσ2i − 2(1− ξ) (∆ER(i, γ)− ε)

∣∣∣ Ti,t = s, µ̂i,s = µ, σ̂i,s = σ

)

≤ exp
(
−
s

2
(µi − µ+ ξ(∆ER(i, γ) − ε))2

)
+ exp

(
−sh

(
γσ2

γσ2i − 2(1− ξ)(∆ER(i, γ) − ε)

))
,

where h(x) = 1
2(x− 1− log x).

The lemma holds by the Chernoff upper bound for Pt(θi,t ≥ ·) and Lemma 10 below to upper-

bound Pt(κi,t ≥ ·).

Lemma 10 (Harremoës (2016)). For a Gamma r.v. X ∼ Gamma(α, β) with shape α ≥ 2 and rate

β > 0, we have

P(X ≥ x) ≤ exp

(
−2αh

(
βx

α

))
, x >

α

β
,

where h(x) = 1
2(x− 1− log x).

Lemma 11 (Upper bounding the second term of (1)). We have

n∑

s=1

Pt

(
Gis >

1

n

)
≤ 1 +max





2 log(2n)

ξ2 (∆ER(i, γ) − ε)2
,

log(2n)

h
(

γσ2

γσ2
i
−2(1−ξ)(∆ER(i,γ)−ε)

)



+

C4

ε4
+
C5

ε2
,

where C4, C5 are constants.
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Proof Following from Lemma 9, we have the following inclusions:

{
µ̂i,t +

√
2 log 2n

s
≤ µi + ξ(∆ER(i, γ) − ε)

}

⊆

{
exp

(
−
s

2
(µi − µ+ ξ(∆ER(i, γ) − ε))2

)
≤

1

2n

}

and

{
γσ̂2i,t

γσ2i − 2(1− ξ)(∆ER(i, γ)− ε)
≤ h−1

−

(
log 2n

s

)}

∪

{
γσ̂2i,t

γσ2i − 2(1− ξ)(∆ER(i, γ)− ε)
≥ h−1

+

(
log 2n

s

)}

⊆

{
exp

(
−sh

(
γσ2

γσ2i − 2(1− ξ)(∆ER(i, γ) − ε)

))
≤

1

2n

}
,

where h−1
+ (y) = max {x : h(x) = y} and h−1

− (y) = min {x : h(x) = y}. Hence, for

s ≥ u = max





2 log(2n)

ξ2 (∆ER(i, γ) − ε)2
,

log(2n)

h
(

γσ2

γσ2
i
−2(1−ξ)(∆ER(i,γ)−ε)

)



 ,

by replacing
(
µ1 − ε,

σ̂2
i

σ2
1
+ε

)
with

(
µi + ξ (∆ER(i, γ)− ε) ,

γσ̂2
i,t

γσ2
i
−2(1−ξ)(∆ER(i,γ)−ε)

)
in Zhu and Tan

(2020, S-3.4), we get

Pt

(
Gis >

1

n

)
≤ exp

(
−
sε2

σ2i

)
+ exp

(
−(s− 1)

ε2

σ4i

)
.

Summing over s,

n∑

s=1

Pt

(
Gis >

1

n

)
≤ u+

n∑

s=⌈u⌉

[
exp

(
−
sε2

σ2i

)
+ exp

(
−(s− 1)

ε2

σ4i

)]

≤ 1 + max





2 log(2n)

ξ2 (∆ER(i, γ)− ε)2
,

log(2n)

h
(

γσ2

γσ2
i
−2(1−ξ)(∆ER(i,γ)−ε)

)



+

C4

ε4
+
C5

ε2
.

Finally, set

ξγ = 1−
γσ2i

2∆ER(i, γ)

(
1−

1

h−1
+

(
∆2

ER(i, γ)/2
)
)

∈ (0, 1),

10
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where h−1
+ (y) = max {x : h(x) = y}. By algebra,

h

(
γσ2i

γσ2i − 2(1− ξγ)∆ER(i, γ)

)

= h




γσ2i

γσ2i − 2 ·
γσ2

i

2∆ER(i,γ)

(
1− 1

h−1
+ (∆2

ER
(i,γ)/2)

)
·∆ER(i, γ)




= h




γσ2i

γσ2i − γσ2i

(
1− 1

h−1
+ (∆2

ER
(i,γ)/2)

)


 = h




γσ2i(
γσ2

i

h−1
+ (∆2

ER
(i,γ)/2)

)




= h
(
h−1
+

(
∆2

ER(i, γ)/2
))

= ∆2
ER(i, γ)/2 ≥ ξ2γ∆

2
ER(i, γ)/2

which implies
1

h
(

γσ2
i

γσ2
i
−2(1−ξγ )∆ER(i,γ)

) ≤
2

ξ2γ∆
2
ER(i)

.

and ξγ → 1− as γ → 0+.

Proof [Proof of Theorem 4] We note that for any arm i with distribution ν(i) ∼ N (µi, σ
2
i ) and

ν ′(i) ∼ N (µ′i, (σ
′
i)
2), the KL-divergence given by

KL(ν(i), ν ′(i)) = log
σ′i
σi

+
σ2i + (µi − µ′i)

2

2(σ′i)
2 −

1

2

is well-known. Denote Si =
{
ν ′(i) ∈ EK

N : ER(ν ′(i)) < ER(1)
}

. Denote

Ri := max





2

ξ2∆2
ER(i)

,
1

h
(

γσ2

γσ2
i
−2(1−ξ)∆ER(i,γ)

)



 > 0,

and fix ε > 0 and consider the arm with the distribution N
(
µi + σi

√
2/Ri + ε, σ2i

)
. Then a direct

computation gives

ER(ν ′(i)) − ER(ν(1)) = −(µi + σi
√

2/Ri + ε) +
γ

2
σ2i −

(
−µi +

γ

2
σ2i

)

= −(σi
√

2/Ri + ε) < 0,

thus ER(ν ′(i)) < ER(ν(1)) and ν ′(i) ∈ Si. Furthermore,

KL(ν(i), ν ′(i)) = log
σi
σi

+
σ2i +

(
µi −

(
µi + σi

√
2/Ri + ε

))2

2σ2i
−

1

2

=
1

Ri
+

(2σi
√

2/Ri + ε)ε

2σ2i
.
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By the definition of η,

η(i, γ) ≤ lim
ε→0+

[
1

Ri
+

(2σi
√

2/Ri + ε)ε

2σ2i

]
=

1

Ri
=⇒

1

η(i, γ)
≥ Ri.

Hence,

lim inf
n→∞

Rn(π)

log n
=

∑

i∈[K]\{1}

(
lim inf
n→∞

E[Ti,n]

log n

)
∆ER(i, γ) ≥

∑

i∈[K]\{1}

Ri∆ER(i, γ).

Thus, we have that ERTS is asymptotically optimal unconditionally.
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Amir Sani, Alessandro Lazaric, and Rémi Munos. Risk-aversion in multi-armed bandits. In Ad-

vances in Neural Information Processing Systems, pages 3275–3283, 2012.

Wen Sun, Debadeepta Dey, and Ashish Kapoor. Risk-aversion in multi-armed bandits. In Interna-

tional Conference on Machine Learning, pages 3280–3288, 2017.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of

the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Sattar Vakili and Qing Zhao. Risk-averse multi-armed bandit problems under mean-variance mea-

sure. IEEE Journal of Selected Topics in Signal Processing, 10(6):1093–1111, 2016.

Qiuyu Zhu and Vincent YF Tan. Thompson sampling algorithms for mean-variance bandits. In

International Conference on Machine Learning, pages 2645–2654, 2020.

12


	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Problem formulation
	3 The ERTS Algorithm
	4 Regret Bound for ERTS and Lower Bounds
	5 Proof Outlines for Theorem 2 and 4
	6 Conclusion

