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Abstract

Deep generative modelling has seen impressive progress in the past few years.
People have also recently started sampling from the latent spaces of deep generative
models for downstream tasks like reconstruction and refining samples from
generative models. This report explores four directions to improve and extend the
sampling process for solving inverse problems using deep generative models. We
first introduce a new initialisation for Langevin dynamics, which we call MAP
initialisation that we show leads to a faster mixing time. Next, we explored using
the discriminator to perform importance sampling of the latent space and showed
that we could improve the visual quality of samples using the discriminator. We
also explored adaptive sampling using posterior sampling and showed that adaptive
sampling methods reduce the number of measurements needed for tasks such as
inpainting. Finally, we extend these results to the closely related area of Bayesian
optimisation. We empirically demonstrated these results on multiple estimation
tasks and settings for various models on the MNIST dataset.

1 Introduction

The goal of inverse problems is to estimate an unknown signal from a set of observations. These
observations are obtained from an unknown dataset by a forward process, which is typically non-
invertible. Thus reconstructing a unique solution that fits the observations is difficult without prior
knowledge about the data as the problem is ill-posed. This setup is interesting because numerous
imaging problems such as super-resolution, compressed sensing and denoising fit into this framework
[1].

To make this description more precise, we can consider an unknown n-pixel image x∗ ∈ Rn that is
observed via m noisy measurements y ∈ Rm according to the model

y = A(x∗) + ε

where A is the (possibly nonlinear) forward measurement operator, we focus on compressed sensing,
denoising and inpainting in this report, and is the noise vector, which we typically assume is Gaussian.
The goal then is to recover x∗ given knowledge of A and y

The classical approach would assume some prior knowledge about x such as smoothness [2], sparsity
in some basis [3], or other geometric properties [4] and then finds an x that is both a good fit to
the observations y and likely given the prior knowledge. A regularisation function r(x) measures
the lack of conformity of x to a prior model, and x is selected so that r(x) is as small as possible
while still fitting the observed data. Recent work in machine learning has demonstrated that deep
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neural networks can leverage large datasets to directly compute regularised reconstructions across a
host of computational imaging tasks [5–8]. In particular, deep generative models can regularise by
constraining the reconstructed image x to remain on a learned manifold [9].

While this is sufficient for obtaining point estimates for x∗, we are often interested in knowing the
uncertainty associated with this estimate or other possible estimates for x∗ as well. The uncertainty
of our estimates could also help in the adaptive setting where we can choose where next to sample to
improve our estimate of x∗ to reduce the number of measurements needed to obtain a reasonable
estimate. This setup is often found in applications like X-ray computed tomography and other
areas where measurement is expensive. More formally, we want to estimate the following posterior
distribution

p(x | y) ∝ p(y | x)p(x)

where x is the image and y is the measurement.

This work thus explores

• how we can sample efficiently from this posterior distribution using Langevin dynamics to
estimate this posterior distribution

• using the samples from the posterior distribution to adaptively sample from an image to
reduce the number of measurements needed for estimation

• extending the methods for adaptive sampling to Bayesian optimisation using deep generative
models.

2 Background

2.1 Deep Generative Models

Deep Generative Models (DGMs) have been successfully applied to numerous domains in recent years,
from generating high-resolution photo-realistic images [10] to learning policies in reinforcement
learning [11]. Among the variety of proposed DGMs, Variational Autoencoder (VAEs) [12] and
Generative Adversarial Networks (GANs) [13] have received widespread attention and popularity
from the machine learning community for their ability to generate high-quality samples, especially
images, that resemble the training data.

VAEs in the most basic setting defines a generative model of the form

pθ(z, x) = pθ(z)pθ(x|z)
where pθ(z) is usually a Gaussian, and pθ(x|z) is usually a product of exponential family distributions
(e.g., Gaussian or Bernoulli), with parameters computed by a neural network decoder, dθ(z). The
decoder parameters are fitted by maximising the marginal likelihood

pθ(x) =

∫
pθ(x | z)pθ(z)dz.

Unfortunately, the marginal likelihood is often intractable. Thus, we maximise the lower bound of
the marginal likelihood,

log pθ(x) = Eqφ(z|x)[log pθ(x)]

= Eqφ(z|x)

[
log

(
pθ(x, z)

pθ(z | x)

)]
= Eqφ(z|x)

[
log

(
pθ(x, z)

qφ(z | x)

qφ(z | x)

pθ(z | x)

)]
= Eqφ(z|x)

[
log

(
pθ(x, z)

qφ(z | x)

)]
︸ ︷︷ ︸

ELBO

+Eqφ(z|x)

[
qφ(z | x)

pθ(z | x)

]

also known as the evidence lower bound (ELBO) instead. The approximate posterior qφ(z | x) used
to calculate the ELBO can be thought of as encoding the input x into a stochastic latent bottleneck z
and then decoding it to reconstruct the input approximately. It is thus sometimes called the encoder
of the VAE.
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GANs are likelihood-free methods where training is formulated to solve the following minimax
problem involving a generator and a discriminator.

min
G

max
D

V (G,D) = Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1−D(G(z))]

In this setup, the generator seeks to generate samples similar to the real data by minimising a
discrepancy determined by the discriminator between real and generated samples. After the game
converges, the discriminator is thrown away, and we only keep the generator to generate new samples.

However, recent work has shown that this practice of discarding the discriminator is wasteful, as
the discriminator contains valuable information about the underlying data distribution [14–18]. This
insight has led to new training strategies and sampling techniques that use this information from
discriminators to improve the quality of generated samples from GANs and other generative models
such as Variational Autoencoders (VAEs) or Normalising Flows [19, 20]. On the other hand, the
current methods used to solve inverse problems using such generative priors typically discards the
discriminator from the estimation process altogether [9, 21]. This motivates an intriguing possibility
to incorporate discriminator information to solve such inverse problems, which we explore further in
Section 3

2.2 Energy-Based Models and Langevin Dynamics

An energy-based model (EBM) is a specific type of generative model that is defined by a Boltzmann
distribution (otherwise known as the Gibbs distribution) pθ(x) = e−Eθ(x)/Zθ, where x ∈ X , X is
the sate space, and E(x) : X → R is the energy function. The model is then trained using maximum
likelihood estimation by maximising the expected log-likelihood over the data distribution as such,

l(θ) = Ex∼pdata(x) [log pθ(x)]

which is often intractable due to the normalising constant Zθ. Nevertheless, we can still estimate
the log-likelihood gradient with MCMC approaches, allowing for likelihood maximisation using
stochastic gradient descent. In this report, we mainly discuss fully trained EBMs and thus focus on
sampling from EBMs instead. For more information about EBMs, we refer the reader to [22].

Since pθ(x) is intractable, samples are typically generated from pθ(x) by an MCMC algorithm to
avoid the intractable normalising constant in the denominator. One common MCMC algorithm
in continuous state spaces is Langevin dynamics [23] which has the following update equations
xi+1 = xi − ε

2∇xE(xi) +
√
εn, n ∼ N(0, I). In fact, under certain regularity conditions, such

as theorem 1, we can show that Langevin dynamics samples close to the distribution with high
probability.

Theorem 1 (Informal). Suppose the Langevin chain corresponding to p(x) ∝ e−f(x) is initialized
close to a manifold M satisfying the following two properties:

1. (Nearness to the manifold): When initialized close to M , the Langevin dynamics stay in
some neighborhood D = {X : minX′∈M‖X −X ′‖2 ≤ s} of M up to time T with high
probability.

2. (Poincare inequality along level sets): The distribution p̃∆ for all ∆ ∈ B have a Poincare
constant bounded by Clevel]

3. (Poincare inequality across level sets): The distribution q has a Poincare constant bounded
by Cacross.

4. (Bounded change of manifold probability): If we denote G∆ : M → M∆ the map
G∆(X) = X + φX(∆), for all X ∈ M and ∆ ∈ B, the relative change (with respect to
∆) in the manifold density is bounded:∥∥∥∥∇B(p∆(X + φX(∆)) det((dG∆)X))

p∆(X +X (∆) det((dG∆)X)

∥∥∥∥
2

≤ Cchange

Then Langevin chains run for time O(max(1, Clevel max 1, Cacross max 1, C2
change) outputs a

sample from a distribution that is close in total variation distance to the condition distribution
of p(X) restricted to D with high probability.
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The formal statement and proof are in Section 4.1 and Theorem 4 in [24]. However, in practice, these
regularity conditions may not hold, and thus we may not sample from the target distribution. In
this report, we explore ways to initialise near the manifold to satisfy the first regularity condition in
Theorem 1.

Furthermore, poor geometry of the latent space might mean the mixing time of Langevin dynamics
might be very long. Hence, to avoid slow-sampling Markov Chains, one common method is to
perform sampling using a carefully structured latent space [25, 26]. In this report, we also explore
ways to reduce the mixing time by constructing latent spaces for efficient sampling using Langevin
dynamics.

2.3 Upper-Confidence Bound and Thompson Sampling

One fundamental problem, especially when dealing with optimisation, is the exploitation vs
exploration trade-off. To theoretically explore this trade-off, researchers typically explore the multi-
armed bandit setting [27], which idealises the problem and allow researchers to focus on this trade-off.
One example of the bandit setup is to imagine you are in a casino facing multiple slot machines.
Each slot machine has its unknown probability of how likely you can get a reward at one play. The
question is: what is the best strategy to achieve the highest rewards in the long term? There are two
commonly applied algorithms for solving the multi-armed bandit problem in a tractable way in the
bandit literature. The first is the Upper Confidence Bound (UCB) algorithm [28], and the second is
Thompson sampling [29]. The idea of the UCB algorithm is to be optimistic about actions with high
uncertainty and thus to prefer actions for which we haven’t had a confident value estimation yet, thus
favouring exploration of actions with a solid potential to have an optimal value. The UCB algorithm
measures this potential by an upper confidence bound of the reward value, Ût(a), so that the true
value is below with bound Q(a) ≤ Q̂t(a) + Ût(a), where Q(a) = E[r | a], with high probability.
and selects the greediest action to maximise the upper confidence bound:

aUCBt = argmaxa∈AQ̂t(a) + Ût(a)

While, in the second approach, Thompson sampling, at each time step, we select action by sampling
from the following posterior probability distribution as such

π(a | ht) = ER|ht [1(a = argmaxa∈AQ(a))]

where π(a | ht) is the probability of taking action a given the history ht. After that, we observe
the actual reward and update our posterior distribution accordingly, allowing us to balance between
exploration and exploitation systematically.

3 Directions and Approaches Explored

As an overview, we first describe how posterior sampling can be used to perform estimation and
then describe a problem faced by this approach in practice. Due to space constraints, we focus on
conveying the key concepts and relegate details (e.g. proofs) to the appendix.

Definition 1 (Posterior Sampling For Recovery). Given an observation y, the posterior sampling
recovery algorithm with respect to P outputs x̂ according to the posterior distribution P (· | y)

Posterior sampling using generative priors have shown great promise in compressed sensing and
other inverse problems, as shown in [21], who showed that by modelling the posterior distribution as
an EBM where

E(z) = −‖A(G(z))− y‖2

2σ2/m
− ‖z‖

2

2
+ log c(y)

we can prove instance optimality of the recovery algorithm for general distribution R give m
measurements as long as P and R are close in Wasserstein distance.

In practice, due to the poor geometry of the latent space of DGMs, the mixing time for
such algorithms can be very long. In this report, we explore two possibilities to overcome this
problem; initialising near the manifold and applying an importance weight over the entire latent
space to reshape the latent space into a more MCMC friendly geometry.
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Figure 1: Illustration of MAP initialisation and DWLS sampling on an image manifold (represented
as the surface)

3.1 Posterior and MAP Initialisation

One approach we explored to ensure quick mixing time for Langevin dynamics is to initialise near the
manifold using an encoder to first encode the observations y before performing posterior sampling
on the latent space. We call this approach posterior initialisation. This approach is beneficial if we
have a trained encoder available such as in VAEs or Normalising Flows. For this method to work
on operators that may not result in y having the same shape as x such as compressed sensing, we
use a MAP estimate of x first and encode the estimate before sampling around it in the latent space.
This second method we call MAP initialisation. We show that this method significantly reduces the
number of steps required for Langevin dynamics to mix.

3.2 Discriminator Weighted Latent Sampling

Another approach we explored to reduce the mixing time for Langevin dynamics is to apply an
importance weight over the entire latent space to reshape the latent space into a more MCMC friendly
geometry. We propose to find this re-weighting function via the discriminator of a GAN. We call this
approach Discriminator Weighted Latent Sampling (DWLS).

3.2.1 Density Ratio Trick For GANs

Given a binary classifier (discriminator) D that has been trained to distinguish between samples µ
and ρ, the density-ratio ρ(x)/µ(x) can be estimated via the density ratio trick [30],

ρ(x)

µ(x)
≈ 2 1−D(y = 1 | x)

D(y = 1 | x)
= exp(−d(x)) (1)

where D(y = 1 | x) denotes the conditional probability of the sample x being from µ and d(x)
denotes the logit output of the classifier D.

Lemma 1 (Latent Density Ratio). Let g : Z → X be a sufficiently well-behaved function where
Z ⊆ Rn and X ⊂ Rm with m > n. Let pZ(z), pẐ(ẑ) be probability densities on and qX(x),
qX̂(x̂) be the densities of the pushforward measures g]Z, g]Ẑ respectively. Assume that pZ(z) and
pẐ(ẑ) have same support, and the Jacobian matrix Jg has full column rank. Then, the density-ratio
pẐ(u)/pZ(u) at the point u ∈ Z is given by

pẐ(u)

pZ(u)
=
qX̂(g(u))

qX(g(u))
. (2)

2If the discriminator is perfect, then this approximate sign becomes an equal sign.
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pZ(u)

pẐ(u)
=
ρ(gθ(u))

µ(gθ(u))
= exp(−dφ(gθ(u))). (3)

3.2.2 Importance Sampling Using Density Ratio

One way to use this density ratio is to apply the importance sampling formula directly to compute a
good estimate for z.

E [z | y] =

∫
z
pẐ(z | y)

pZ(z | y)
pZ(z | y)dz

However, this method does not allow us to estimate the uncertainty because we do not have the
posterior distribution to sample from.

3.2.3 Constructing Energy-Based Prior Using Density Ratio

We can instead construct the following energy-based model for the latent space of z to model the
posterior distribution to sample from as such,

pẐ(u) = pZ(u) exp(d(gθ(u)))/Zθ (4)

Therefore,
log p(z) = log pZ(z) + d(gθ(z)))− logZθ (5)

Hence,

E(z) = − log p(z | y)

= − log p(y | z)− log p(z) + log p(y)

=
‖A(gθ(z))− y‖2

2σ2/m
+
‖z‖2

2
− dφ(gθ(z)) + c(y) (6)

where c(y) is a constant that depends only on y. Since we only care about the gradient of log p(z | y),
we can ignore this constant c(y). Also, since σ and η (step-size) are hyperparameters we choose, we
are effectively sampling from the following energy function

Ẽ(z) = ‖A(gθ(z))− y‖2 +
λ

2
‖z‖2 − λdφ(gθ(z))

where λ = 2σ2

m .

Algorithm 1 Discriminant weighted latent sampling

Require: generator (gθ), discriminator (dφ), number of update steps (N ), step-size (η), noise factor
(γ).

1: z0 ∼ pZ(z) . Sample from the prior.
2: for i← 1 to N do
3: ξi ∼ N (0, I)

4: zi+1 = zi − η∇zẼ(z) +
√
ηξi

5: end for
6: if denoise ZN then . Optional denoising step, refer to appendix subsection B.1
7: return gθ(zn)− η∇zẼ(z)
8: else
9: return gθ(zn)

3.2.4 Discriminator Importance Weighting For All

One of the limitations of the construction above is that we are often unable to estimate the
corresponding density ratio for pθ/µ. Here, we propose a technique that extends our approach to
refine samples from a larger class of DGMs such as VAEs and Normalizing Flows.

A naive approach is to use the crude approximation pθ/µ ≈ pφ/µ, where pθ is the density
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of the samples generated by a generator gθ, µ is the density of the real data distribution and pφ
is density of the samples generated by a generator gφ which is a different generative model gφ
trained on the same dataset as gθ. This approach works only if pφ is close to pθ which not always hold.

Another method proposed by [14][31], is to use train a density ratio corrector pθ(x)/pφ(x)
based on the samples produced from gφ and gθ as such

pθ(x)

µ(x)
=
pφ(x)

µ(x)

pθ(x)

pφ(x)
= exp(−dφ(x)) · exp(−dλ(x)), (7)

Alternatively, another approach is to fine-tune the discriminator based on samples from gθ.
Theorem 2. Assuming overlapping support between pθ and pθ and some regularity conditions such
that the KL-divergence is differentiable

Ez∼P (z) [∇φDφ(gθ(z))] = ∇φKL(pθ||pφ) (8)

The proof is given in Section A.2. This suggests a straightforward idea for using the discriminator on
a new generator, is to simply perform gradient descent on the backward KL divergence of pθ and pφ
to minimise the difference between pθ and pφ i.e fine-tuning the discriminator. Then, using the new
Dθ in (6) we can obtain samples from the posterior distribution.

3.3 Adaptive Setting

In adaptive sampling, we choose the subsequent measurements the model receives based on which
pixels the model has the greatest uncertainty about to improve the model’s estimate. The uncertainty
can be estimated using the variance of the estimator. We can estimate the estimator’s variance by
taking various samples from the posterior and calculating the estimated variance. Then choose pixels
with the highest measurements to be estimated as seen below in the following algorithm3

Algorithm 2 Adaptive Sampling Using Deep Generative Prior For Inpainting

1: for m← 1 to M do
2: z0 ∼ pZ(z) . Sample from the prior.
3: for i← 1 to N do
4: ξi ∼ N (0, I)
5: zi+1 = zi − η∇zE(z | ym, Am) +

√
ηξi

6: end for
7: Var (z)̂ = 1

N−l+1

∑N
i=l z

2
i −

(
1

N−l+1

∑N
i=l zi

)2

8: Am+1 ← update(Am, topk(Var (z)̂,K))

9: ym+1 ← update(ym,measure(x∗, topk(Var (z)̂,K))))

where E(z | y, A) = −‖A(G(z))−y‖2
2σ2/m − ‖z‖

2

2 + log c(y), M is the number of adaptive steps that
can be taken, N is the number of samples from the posterior used to estimate the variance, K is
the number of measurements per adaptive step and l is the burn-in period. This report focuses only
on inpainting because inpainted measurements are easier to visualise and understand than noisy or
compressed measurements. Furthermore, after each time step, we estimate and calculate the resulting
mean squared error to evaluate our adaptive sample’s performance.

3.4 Optimisation Setting

Finally, we explore the optimisation setting. Instead of finding the maximum variance like in the
adaptive case, we are interested in finding the region with the highest mean intensity to efficiently find
the maximum pixel in an image. There are two approaches we explored in the optimisation setting.

3The use of the update and measure function are implementation specific as they depend on
how topk, Am and ym are being implemented for more details please refer to the github code at
https://github.com/Neoanarika/inverse-probelms-urops.
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The first is a Thomspon sampling, and the second is a UCB-type algorithm, both using DGMs as
priors to sample from. The algorithms are as follows

Algorithm 3 Thompson sampling using deep generative prior for inpainting

1: for m← 1 to M do
2: z0 ∼ pZ(z) . Sample from the prior.
3: for i← 1 to N do
4: ξi ∼ N (0, I)
5: zi+1 = zi − η∇zE(z | ym, Am) +

√
ηξi

6: end for
7: z̄ = 1

N−l+1

∑N
i=l zi

8: Am+1 ← update(Am, topk(z̄,K))
9: ym+1 = update(ym,measure(x∗, topk(z̄,K))))

and

Algorithm 4 UCB using deep generative prior for inpainting

1: for m← 1 to M do
2: z0 ∼ pZ(z) . Sample from the prior.
3: for i← 1 to N do
4: ξi ∼ N (0, I)
5: zi+1 = zi − η∇zE(z | ym, Am) +

√
ηξi

6: end for
7: z̄ = 1

N−l+1

∑N
i=l zi

8: Var (z)̂ = 1
N−l+1

∑N
i=l z

2
i −

(
1

N−l+1

∑N
i=l zi

)2

9: Am+1 ← update(Am, topk(z̄ + σVar (z)̂,K))

10: ym+1 = update(ym,measure(x∗, topk(z̄ + σVar (z)̂,K)))
11: end for=0

where σ is hyperparameter that determines the trade off between choosing a more uncertain region vs
a pixel with higher value.

4 Related Work

The idea of leveraging the posterior distributions to reduce the mixing time of Langevin dynamics is
also found in other work [32]. In [32] the idea is to use the posterior to initialise the sample within a
high-probability density region, preventing the sample from exploring low-density regions. This is
similar to MAP initialisation, which tries to initialise near the image manifold where most of the
images lie.

Previous work has also considered utilising the discriminator to achieve better sampling for
GANs. Discriminator rejection sampling [16] and Metropolis-Hastings GANs [17] use the generator
as the proposal distribution and the discriminator as the criterion of acceptance or rejection. However,
these methods are inefficient as they may need to reject a lot of samples. More recently, methods like
Discriminator Optimal Transport (DOT) [18], Discriminator Driven Latent Sampling (DDLS) [15],
and Discriminator gradient flow (DGflow) [14] have used gradient-based approaches to improve
the efficiency of this refinement process. In particular, our construction of our EBM for our prior
distribution is based on the EBM construction used by DDLS. However, none of these papers has
used these improved samples for downstream problems like reconstruction on an inverse problem or
adaptive sampling before, and DDLS is only limited to GAN priors, but our method can generalise to
use any generative models as a prior due to the fine-tuning step.

Recent work has also sought to use EBMs to structure the latent space [26, 33]. However,
most of this work focused on training the EBM and base generative model concurrently, while our
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Figure 2: A plot of the per-pixel reconstruction error as we vary the number of measurements m for
inpainting and compressed sensing and across different noise level for denoising

work focuses on only using pre-trained discriminators and generators. More closely related to our
work is the recent papers on using pre-trained generative priors [9, 21, 34] to perform either MAP
estimation or posterior sampling. However, this work often discards the discriminator and only use
the generator to perform sampling.

There has also been some work that proposes adaptive sampling to maximise the reconstruction
quality of magnetic resonance images (MRI) given a limited sample budget [35, 36] by adaptively
sampling the target. This is similar to our setup for adaptive sampling, except we focus on adaptive
sampling for inpainting instead of other operators such as compressed sensing. Furthermore, we do
not train a specific generator network to sample from but use a pre-trained generator and Langevin
dynamics to then sample from the pre-trained network. This allows our method to leverage the wide
number of pre-trained models for image generation instead of training our own.

Finally, to our knowledge, Bayesian optimisation with generative priors hasn’t been widely
explored. Bayesian optimisation typically uses Gaussian processes instead, rather than deep
generative models [37]. While some papers have discussed using deep generative models for
optimisation, such as in automated chemical design [38], these papers typically optimise through the
latent spaces. Treating the generative model as an encoder and decoder to reduce the size of the
search space rather than as a way we can sample a posterior distribution to aid in the optimisation.

5 Experiments

This section presents empirical results on various deep generative models trained on multiple synthetic
and real-world datasets. Our primary goals were to determine (a) if the proposed MAP initialisation
can reduce the mixing time of Langevin dynamics, (b) if DWLS is effective in improving the
estimation process on a variety of different inverse problems and (c) if posterior sampling of deep
generative models is helpful in the adaptive and optimisation settings.

We experimented with three different types of inverse problems, namely inpainting, denoising
and compressed sensing on the MNIST dataset. The code is available online at
https://github.com/Neoanarika/inverse-probelms-urops.

5.1 MAP Initialisation Experiments

In Figure 2, we show the performance of our proposed algorithm for inpainting on the MNIST dataset
with a convolutional VAE model. The baselines we consider are random initialisation, posterior
initialisation, and MAP initialisations. Random initialisation directly samples from N (0, 1) before
performing Langevin sampling with our energy function E(x). In contrast, posterior initialisation
feeds the observation image y into the posterior/encoder of the VAE and uses the resulting latent
vector as initialisation for Langevin sampling. Lastly, MAP initialisation uses the posterior/encoder
of the VAE like posterior initialisation but first perform MAP estimation before feeding the MAP
estimate into the VAE encoder and using the latent vector as initialisation for Langevin sampling.

Notice that MAP initialisation outperforms both random and Posterior initialisation across any number
of measurements in Figure 2. Furthermore, observe that MAP initialisation has the smallest variance
and thus error bars out of the three methods. The small variance is probably because the MAP initial
estimate is closer to the manifold, so the region of exploration is more restricted than posterior or
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Figure 3: Reconstructed Samples From DWLS vs Posterior Sampling For Compressed Sensing

Figure 4: Reconstructed Samples From DWLS vs Posterior Sampling For Compressed Sensing

random initialisation resulting in the smaller variance. We obtain similar results for compressed
sensing and denoising, as shown in Figure 2, further supporting our claims that MAP initialisation is
helpful for posterior sampling.

5.2 Discriminator Weighted Latent Sampling (DWLS) Experiments

In Figure 3, we show that DWLS slightly improves the samples obtained compared to posterior
sampling. However, we do not observe any significant improvements when comparing sampling with
DWLS versus sampling without DLWS in both the GAN and VAE settings, as seen in Figures 4 and
5 regardless of initialisation or fine-tuning.

One possible reason that Figure 4 and 5 do not show any difference in the MSE is that MSE does
not sufficiently capture the differences in the images. Using another more informative metric such
as structural similarity index measure (SSIM) might be beneficial when evaluating the samples.
Another possible reason is that what the discriminator penalises is what MSE and the Gaussian prior
already penalise. The discriminator does not add much new information, and hence the MSE does

Figure 5: Comparing sampling with and without DWLS and with and without fine-tuning of the
discriminator for VAES
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not look significantly different or different at all in Figures 4 and 5 . This also partially explains why
fine-tuning does not seem to have any effect on the MSE.

5.3 Adaptive Sampling Experiments

Figure 6: Adaptive Sampling For MNIST dataset

In the adaptive setting, we initially observed no pixels from MNIST. Then we choose which pixels
to sample next based on 2 and sample the pixels repeating this till we run out of samples we can
take. In this adaptive sampling setup, both the GAN and VAE adaptive sampling slightly outperforms
random sampling and epsilon-greedy sampling using the same models as can be seen from figure 6.
This indicates that samples chosen based on how much variance they produce during sampling can
help in improving the estimates of the GAN and VAE models. The large variance for both VAE and
GAN adaptive sampling is because the internal sampling during each time step is unlikely to fully
converge due to the limited number of steps resulting in the higher variance. The higher variance and
MSE for GANs compared to VAEs is because they take longer to converge when sampling from their
posterior, resulting in more variation and poorer estimates when we stop sampling before Langevin
can converge.

5.4 Optimisation Experiments

We augmented the MNIST dataset by adding a gradient filter over the original images; for more
information, refer to Section B.2 in the appendix. The goal is to estimate where the maximum pixel is,
and the performance, i.e. error term’s, is measured by the absolute difference between the maximum
and the estimated maximum pixel. For our baseline, we randomly pick images in the training set and
choose their maximum pixels as the estimated maximum pixels of our target image. In this setup, we
found that using VAE as the base model, UCB and Thompson sampling converged slower at the same
rate or possibly even slower than our baseline across 25 randomly chosen images. While for GANs,
both UCB and Thompson sampling converged faster than our baseline across the same 25 randomly
chosen images as shown in figure 7. This difference might be because VAEs are poorer at capturing
the gradient filter applied across the images than the GAN model. The difference in the generator
ability can be seen in Figure 8. This suggests, unsurprisingly, that a good generator is required for
effective optimisations.

6 Conclusion and Future Work

This report explores four different directions. The first direction we explore is MAP initialisation,
which allows us to sample the posterior near the underlying manifold, resulting in faster convergence
than random initialisation. Another direction we explored is using the discriminator to produce
importance weights for the latent space. We also showed how to apply the technique to commonly
used deep generative models: GANs and VAEs. However, we did not manage to show that importance
sampling significantly improves the accuracy nor convergence of the sampling process. We also
explored the adaptive sampling setting, where we found that adaptive sampling works better than
random sampling for both GANs and VAEs. Finally, in the optimisation setting, UCB and Thompson
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Figure 7: Optimisation results on multi-gradient MNIST dataset

Figure 8: Thompson samples from GAN and VAE for 2-Gradient MNIST dataset

sampling did not do better than our baseline for VAEs but did better for GANs. The difference in
performance is likely due to GANs learning the data distribution more accurately than VAEs and thus
better capturing the gradient. Moving forward, we are considering exploring using more powerful
models and architectures such as score-based generative models [39], or Normalising flows [19]
to test our results on larger image datasets. Similarly, we can explore more complex task for the
optimisation setting as well, such as automatic chemical design [38] where the goal is to optimise
specific target chemical properties in molecules. Lastly, another direction that could be interesting is
to sample across various layers of the generator. This idea is based on iterative layer optimisation
[40], which progressively changes the input layer, obtaining more expressive generators successively
instead of optimising only over the initial latent code.
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A Proofs

A.1 Proof of Lemma 2 to prove Theorem 2

Lemma 2.

Ex∼Pθ(x)

[
log

pφ(x)

µ(x)

]
= KL(pθ||µ)−KL(pθ||pφ)

Proof.

Ex∼Pθ(x)

[
log

pφ(x)

µ(x)

]
=

∫
pθ(x) log

pφ(x)

µ(x)
dx

=

∫
pθ(x) log

pθ(x)

µ(x)

pφ(x)

pθ(x)
dx

=

∫
pθ(x) log

pθ(x)

µ(x)
+ pθ(x) log

pφ(x)

pθ(x)
dx

=

∫
pθ(x) log

pθ(x)

µ(x)
− pθ(x) log

pθ(x)

pφ(x)
dx

= KL(pθ||µ)−KL(pθ||pφ)

A.2 Proof of Theorem 2

Proof.

∇φEx∼Pθ(x)

[
log

pφ(x)

µ(x)

]
= ∇φKL(pθ||µ)−KL(pθ||pφ)

= −∇φKL(pθ||pφ) (9)

Plugging (9) to (1), we see that

Ex∼Pθ(x) [∇φdφ(x)] = ∇φKL(pθ||pφ)

Therefore,
Ez∼P (z) [∇φdφ(gθ(z))] = ∇φKL(pθ||pφ)
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B Experimental Notes

B.1 Usefulness of the denoising step

Figure 9: Denoising (σ = 0.1), vs no-denoising

Several papers [21][41] have reported using the denoising step as a final stage in the estimation
procedure. This is based on the Tweedie formula from Bayesian statistics [42]. An intuitive
explanation for why the denoising step is used is that we typically take the average of several samples,
which might make the resulting estimate "blur". One way to combat this is to denoise it. As seen
in Figure 9, we found that using this final denoising step helps improve the estimates when the
hyperparameters σ is chosen appropriately. In this work, we did not use this denoising step in any of
the experiments we reported. Thus, the experimental results we obtain in the report can be easily
improved with this final denoising step if an appropriate σ is chosen.

B.2 Multi-gradient Augmentation

Figure 10: Multi-gradient dataset

We augmented the MNIST dataset by adding a gradient filter over the original images which is
randomly applied throughout the dataset such that each the different filters have the same chance of
occurring on any image. There are two types of augmentations available 2-gradient or 4-gradient. In
the 2-gradient setup we have two directions: top and down. While in the 4-gradient setup we have
4-directions: top, down, left and right. The goal is to try to sample from the image to eventually find
the maximum pixel. We evaluate the performance on this dataset by taking the difference between
the maximum pixel of the image and the estimated maximum pixel.
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